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Count what is Countable

Measure what is Measurable
(and keep working on the beam)

Theory Experiment

Measurements corrected to
Hadron Level

with acceptance cuts
(~ model-independent)

Theory worked out to 
Hadron Level

with acceptance cuts
(~ detector-independent)

G. Galilei

Amplitudes
Monte Carlo
Resummation

Strings
...

Hits
0100110
GEANT
B-Field

....

Feedback Loop

If not worked out to hadron 
level: data must be unfolded with 

someone else’s hadron-level theory

Unfolding beyond hadron level 
dilutes precision of raw data

(Worst case: data unfolded to ill-
defined ‘MC Truth’ or ‘parton level’)

MC Generators Detector Unfolding



From Partons ...
• Main Tool

• Lowest-Order Matrix Elements calculated in a fixed-order 
perturbative expansion → parton-parton scattering cross sections
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L=...

L → FeynRules/LanHEP → AlpGen/MadGraph/CalcHEP/CompHEP/… → partons
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Reality is more complicated 

        ... to Pions
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Monte Carlo Generators
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Improve Born-level perturbation theory, by including the ‘most significant’ corrections
→ complete events → any observable you want

Calculate Everything ≈ solving QCD → requires compromise!
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(+ many other ingredients: resonance decays, beam remnants, Bose-Einstein, …)



Starting Point

Want to generate events
In as much detail as Mother Nature

Get average and fluctuations right
Make random choices ≈ as in nature 

Factorization

dσ

dX
=

�

a,b

�

f

�

X̂f

fa(xa, Q
2
i )fb(xb, Q

2
i )

dσ̂ab→f(xa, xb, f, Q2
i , Q

2
f)

dX̂f

D(X̂f → X, Q2
i , Q

2
f)
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The Monte Carlo method

Want to generate events in as much detail as Mother Nature
=⇒ get average and fluctutations right

=⇒ make random choices, ∼ as in nature

σfinal state = σhard processPtot,hard process→final state

(appropriately summed & integrated over non-distinguished final states)

where Ptot = PresPISRPFSRPMIPremnantsPhadronization Pdecays

with Pi =
∏

j Pij =
∏

j
∏

k Pijk = . . . in its turn

=⇒ divide and conquer

an event with n particles involves O(10n) random choices,
(flavour, mass, momentum, spin, production vertex, lifetime, . . . )
LHC: ∼ 100 charged and ∼ 200 neutral (+ intermediate stages)

=⇒ several thousand choices
(of O(100) different kinds)

The Monte Carlo method

Want to generate events in as much detail as Mother Nature
=⇒ get average and fluctutations right

=⇒ make random choices, ∼ as in nature

σfinal state = σhard processPtot,hard process→final state

(appropriately summed & integrated over non-distinguished final states)

where Ptot = PresPISRPFSRPMIPremnantsPhadronization Pdecays

with Pi =
∏

j Pij =
∏

j
∏

k Pijk = . . . in its turn

=⇒ divide and conquer

an event with n particles involves O(10n) random choices,
(flavour, mass, momentum, spin, production vertex, lifetime, . . . )
LHC: ∼ 100 charged and ∼ 200 neutral (+ intermediate stages)

=⇒ several thousand choices
(of O(100) different kinds)
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Generator Landscape
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Main Workhorses
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The workhorses: what are the differences?

HERWIG, PYTHIA and SHERPA intend to offer a convenient framework
for LHC physics studies, but with slightly different emphasis:

PYTHIA (successor to JETSET, begun in 1978):
• originated in hadronization studies: the Lund string
• leading in development of multiple parton interactions
• pragmatic attitude to showers & matching
• the first multipurpose generator: machines & processes

HERWIG (successor to EARWIG, begun in 1984):
• originated in coherent-shower studies (angular ordering)
• cluster hadronization & underlying event pragmatic add-on
• large process library with spin correlations in decays

SHERPA (APACIC++/AMEGIC++, begun in 2000):
• own matrix-element calculator/generator
• extensive machinery for CKKW matching to showers
• leans on PYTHIA for MPI and hadronization

Slide from T. Sjöstrand



Hard Processes
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Matrix-Elements Programs

Wide spectrum from “general-purpose” to “one-issue”, see e.g.
http://www.cedar.ac.uk/hepcode/

Free for all as long as Les-Houches-compliant output.

I) General-purpose, leading-order:
• MadGraph/MadEvent (amplitude-based, ≤ 7 outgoing partons):

http://madgraph.physics.uiuc.edu/

• CompHEP/CalcHEP (matrix-elements-based, ∼≤ 4 outgoing partons)
• Comix: part of SHERPA (Behrends-Giele recursion)
• HELAC–PHEGAS (Dyson-Schwinger)

II) Special processes, leading-order:
• ALPGEN: W/Z+ ≤ 6j, nW + mZ + kH+ ≤ 3j, . . .
• AcerMC: ttbb, . . .
• VECBOS: W/Z+ ≤ 4j

III) Special processes, next-to-leading-order:
• MCFM: NLO W/Z+ ≤ 2j, WZ, WH, H+ ≤ 1j

• GRACE+Bases/Spring

Matrix-Elements Programs

Wide spectrum from “general-purpose” to “one-issue”, see e.g.
http://www.cedar.ac.uk/hepcode/

Free for all as long as Les-Houches-compliant output.

I) General-purpose, leading-order:
• MadGraph/MadEvent (amplitude-based, ≤ 7 outgoing partons):

http://madgraph.physics.uiuc.edu/

• CompHEP/CalcHEP (matrix-elements-based, ∼≤ 4 outgoing partons)
• Comix: part of SHERPA (Behrends-Giele recursion)
• HELAC–PHEGAS (Dyson-Schwinger)

II) Special processes, leading-order:
• ALPGEN: W/Z+ ≤ 6j, nW + mZ + kH+ ≤ 3j, . . .
• AcerMC: ttbb, . . .
• VECBOS: W/Z+ ≤ 4j

III) Special processes, next-to-leading-order:
• MCFM: NLO W/Z+ ≤ 2j, WZ, WH, H+ ≤ 1j

• GRACE+Bases/Spring

Matrix-Elements Programs

Wide spectrum from “general-purpose” to “one-issue”, see e.g.
http://www.cedar.ac.uk/hepcode/

Free for all as long as Les-Houches-compliant output.

I) General-purpose, leading-order:
• MadGraph/MadEvent (amplitude-based, ≤ 7 outgoing partons):

http://madgraph.physics.uiuc.edu/

• CompHEP/CalcHEP (matrix-elements-based, ∼≤ 4 outgoing partons)
• Comix: part of SHERPA (Behrends-Giele recursion)
• HELAC–PHEGAS (Dyson-Schwinger)

II) Special processes, leading-order:
• ALPGEN: W/Z+ ≤ 6j, nW + mZ + kH+ ≤ 3j, . . .
• AcerMC: ttbb, . . .
• VECBOS: W/Z+ ≤ 4j

III) Special processes, next-to-leading-order:
• MCFM: NLO W/Z+ ≤ 2j, WZ, WH, H+ ≤ 1j

• GRACE+Bases/Spring

Note: NLO codes not yet 
generally interfaced 

to shower MCs

Slide from T. Sjöstrand



Distribution of observable: O
In production of X + anything

Phase Space

QCD at Fixed Order
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Fixed Order 
(all orders) 

“Experimental” 
distribution of 
observable O in 
production of X: 

k : legs ! : loops {p} : momenta 

High-dimensional problem 
(phase space) 

d!5 ! Monte Carlo integration 

Principal virtues 

1.  Stochastic error O(N-1/2)  
independent of dimension  

2.  Full (perturbative) quantum 
treatment at each order 

3.  (KLN theorem: finite answer at 
each (complete) order) 

Note 1: For k larger than 
a few, need to be quite 
clever in phase space 
sampling 

Note 2: For k+! > 0, need to be 
careful in arranging for real-
virtual cancellations 

“Monte Carlo”: N. Metropolis, first Monte Carlo calculation 
on ENIAC (1948), basic idea goes back to Enrico Fermi 

Sum over 
“anything” ≈ legs

Cross Section 
differentially in O

Matrix Elements
for X+k at (l) loops

Sum over identical
amplitudes, then square

Evaluate 
observable → 

differential in O

Momentum
configuration

Truncate at k=0, l=0 
→ Born Level = First Term

Lowest order at which X happens



Distribution of observable: O
In production of X + anything

Phase Space

QCD at Fixed Order
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Fixed Order 
(all orders) 

“Experimental” 
distribution of 
observable O in 
production of X: 

k : legs ! : loops {p} : momenta 

High-dimensional problem 
(phase space) 

d!5 ! Monte Carlo integration 

Principal virtues 

1.  Stochastic error O(N-1/2)  
independent of dimension  

2.  Full (perturbative) quantum 
treatment at each order 

3.  (KLN theorem: finite answer at 
each (complete) order) 

Note 1: For k larger than 
a few, need to be quite 
clever in phase space 
sampling 

Note 2: For k+! > 0, need to be 
careful in arranging for real-
virtual cancellations 

“Monte Carlo”: N. Metropolis, first Monte Carlo calculation 
on ENIAC (1948), basic idea goes back to Enrico Fermi 

Sum over 
“anything” ≈ legs

Cross Section 
differentially in O

Matrix Elements
for X+k at (l) loops

Sum over identical
amplitudes, then square

Evaluate 
observable → 

differential in O

Momentum
configuration

Truncate at k=n, l=0 
→ Leading Order for X + n

Lowest order at which X + n happens



Distribution of observable: O
In production of X + anything

Phase Space

QCD at Fixed Order
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Fixed Order 
(all orders) 

“Experimental” 
distribution of 
observable O in 
production of X: 

k : legs ! : loops {p} : momenta 

High-dimensional problem 
(phase space) 

d!5 ! Monte Carlo integration 

Principal virtues 

1.  Stochastic error O(N-1/2)  
independent of dimension  

2.  Full (perturbative) quantum 
treatment at each order 

3.  (KLN theorem: finite answer at 
each (complete) order) 

Note 1: For k larger than 
a few, need to be quite 
clever in phase space 
sampling 

Note 2: For k+! > 0, need to be 
careful in arranging for real-
virtual cancellations 

“Monte Carlo”: N. Metropolis, first Monte Carlo calculation 
on ENIAC (1948), basic idea goes back to Enrico Fermi 

Sum over 
“anything” ≈ legs

Cross Section 
differentially in O

Matrix Elements
for X+k at (l) loops

Sum over identical
amplitudes, then square

Evaluate 
observable → 

differential in O

Momentum
configuration

Truncate at k+l ≤ n 
→ NnLO for X

Includes Nn-1LO for X+1, Nn-2LO for X+2, …



Loops and Legs

Another representation
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X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

Lo
op

s

Legs



Loops and Legs

Another representation
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X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

Lo
op

s

Legs

Born

M. Born
(1882-1970)
Nobel 1954



Loops and Legs

Another representation
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X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

Lo
op

s

Legs

X+1 @ LO

Note: σ → ∞ 
if jet not 
resolved



Loops and Legs

Another representation
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X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

Lo
op

s

Legs

X @ NLO
(includes X+1 @ LO)

Note: X+1 jet 
observables 
only correct 

at LO



Loops and Legs

Another representation
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X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

Lo
op

s

Legs

X+1 @ NLO
(includes X+2 @ LO)

Note: X+2 jet 
observables 
only correct 

at LO

Note: σ → ∞ 
if no jet 
resolved



Fixed-Order QCD

What kind of observables can we 
evaluate this way?

Perturbation theory valid → αs must be small
→ All Qi >> ΛQCD

Multi-scale: abensence of enhancements from 
soft/collinear singular (conformal) dynamics 

→ All Qi/Qj ≈ 1

All resolved scales >> ΛQCD AND no large hierarchies*

*)At “leading twist” (not counting underlying event)
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Fixed-Order QCD

Trivially untrue for QCD
We’re colliding, and observing, hadrons → small scales
We want to consider high-scale processes → large scale differences

All resolved scales >> ΛQCD AND no large hierarchies*

*)At “leading twist” (not counting underlying event)

→ A Priori, no perturbatively calculable 
observables in hadron-hadron collisions
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Resummed QCD

Trivially untrue for QCD
We’re colliding, and observing, hadrons → small scales
We want to consider high-scale processes → large scale differences

All resolved scales >> ΛQCD AND no large hierarchies*

*)At “leading twist” (not counting underlying event)

→ A Priori, no perturbatively calculable 
observables in hadron-hadron collisions

Factorization

dσ

dX
=

�

a,b

�

f

�

X̂f

fa(xa, Q
2
i )fb(xb, Q

2
i )

dσ̂ab→f(xa, xb, f, Q2
i , Q

2
f)

dX̂f

D(X̂f → X, Q2
i , Q

2
f)
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PDFs: needed to compute 
inclusive cross sections

FFs: needed to compute (semi-)
exclusive cross sections

All resolved scales >> ΛQCD AND X Infrared Safe
*)At “leading twist” (not counting underlying event)
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Parton Showers
≈ Exclusive Resummation
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Conformal QCD

Bremsstrahlung
Rate of bremsstrahlung jets mainly depends on the 
RATIO of the jet pT to the “hard scale”

Alwall, de Visscher, Maltoni:  
JHEP 0902(2009)017 

Plehn, Tait: 0810.2919 [hep-ph]  
Plehn, Rainwater, PS: PLB645(2007)217  

See, e.g., 

σX(j ≥ 5 GeV)

σX

σX(j ≥ 50 GeV)

σX

qj

qi

qj

p⊥ = 5 GeV

mX

qj

qi

qj

p⊥ = 50 GeV

10mX

Rate of 5-GeV jets
in X production

Eg., Drell-Yan

σX(j ≥ 5 GeV)

σX

σX(j ≥ 50 GeV)

σX

qj

qi

qj

p⊥ = 5 GeV

mX

qj

qi

qj

p⊥ = 50 GeV

10mX≈
Rate of 50-GeV jets
in production of 10X

Eg.,Heavy Particle at LHC

22
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Bremsstrahlung
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“DLA” 

But something’s not right… Interpretation:  the structure evolves 

This is an approximation to 
inifinite-order tree-level 
cross sections Total cross section 

would be infinite … 



Loops and Legs

Summation

24

X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

Lo
op

s

Legs

The Virtual 
corrections 
are missing

Conformal/Bjorken
Scaling

Jet-within-a-jet-within-a-jet-...



Resummation
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“DLA” 

!  Interpretation:  the structure evolves! (example: X = 2-jets) 
•  Take a jet algorithm, with resolution measure “Q”, apply it to your events 
•  At a very crude resolution, you find that everything is 2-jets  

•  At finer resolutions ! some 2-jets migrate ! 3-jets = "X+1(Q) = "X;incl– "X;excl(Q) 
•  Later, some 3-jets migrate further, etc ! "X+n(Q) = "X;incl– #"X+m<n;excl(Q) 
•  This evolution takes place between two scales, Qin ~ s and Qend ~ Qhad 

!  "X;tot  = Sum ("X+0,1,2,3,…;excl ) = int(d"X) 



Resummation
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“DLA” 

But something’s not right… Interpretation:  the structure evolves + UNITARITY:
Virt = - Int(Tree) + F

(or: given a jet definition, an event 
has either 0, 1, 2, or n jets)

!X+1(Q) = !X;incl– !X;excl(Q) 

This includes both real and 
virtual corrections 



Loops and Legs

Resummation
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X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

Lo
op

s

Legs

Born+Res

Unitarity

Conformal/Bjorken
Scaling

Jet-within-a-jet-within-a-jet-...

Exponentiation



Born to Shower
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Born
{p} :  partons

But instead of evaluating O directly on the Born final state, 
first insert a showering operator

Cross sections:

dσ

dO

����
Born

=

�
dΦX w(0)

X δ(O −O({p}X))

w(0)
X ∝ PDFs× |M (0)

X |
2

dσ

dO

����
PS

=

�
dΦX w(0)

X δ(O −O({p}X))

24

Cross sections:

dσ

dO

����
Born

=

�
dΦX w(0)

X δ(O −O({p}X))

w(0)
X ∝ PDFs× |M (0)

X |
2

dσ

dO

����
PS

=

�
dΦX w(0)

X δ(O −O({p}X))

24

Cross sections:

dσ

dO

����
Born

=

�
dΦX w(0)

X δ(O −O({p}X))

w(0)
X ∝ PDFs× |M (0)

X |
2

dσ

dO

����
PS

=

�
dΦX w(0)

X S({p}X,O)

24

Born
+ shower S : showering operator

{p} :  partons

To first order, S does nothing

Cross sections:

dσ

dO

����
Born

=

�
dΦX w(0)

X δ(O −O({p}X))

w(0)
X ∝ PDFs× |M (0)

X |
2

dσ

dO

����
PS

=

�
dΦX w(0)

X S({p}X,O)

S({p}X,O) = δ(O −O({p}X)) + O(αs)

24



To Lowest Order

The Shower Operator
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S({p}X,O) = δ(O −O({p}X))

S({p}X,O) = δ(O−O({p}X))

(

1 −
∫ thad

tstart

dt
dP
dt

)

+

∫ thad

tstart

dtX+1
dP

dtX+1
δ(O−O({p}X+1))

S({p}X,O) = δ(O−O({p}X))∆(tstart, thad)−
∫ thad

tstart

dt
d∆(tstart, t)

dt
S({p}X+1,O)

S({p}X,O) = δ(O −O({p}X))

S({p}X,O) =

(

1 −
∫ thad

tstart

dt
dP
dt

)

δ(O−O({p}X)) +

∫ thad

tstart

dtX+1
dP

dtX+1
δ(O−O({p}X+1))

S({p}X,O) = δ(O−O({p}X))∆(tstart, thad)−
∫ thad

tstart

dt
d∆(tstart, t)

dt
S({p}X+1,O)

S({p}X,O) = δ(O −O({p}X))

S({p}X,O) =

(

1 −
∫ thad

tstart

dt
dP
dt

)

δ(O−O({p}X)) +

∫ thad

tstart

dtX+1
dP

dtX+1
δ(O−O({p}X+1))

S({p}X,O) = δ(O−O({p}X))∆(tstart, thad)−
∫ thad

tstart

dt
d∆(tstart, t)

dt
S({p}X+1,O)

To First Order (unitarity)
S({p}X,O) = δ(O −O({p}X))

S({p}X,O) =

(

1 −
∫ thad

tstart

dt
dP
dt

)

δ(O−O({p}X)) +

∫ thad

tstart

dtX+1
dP

dtX+1
δ(O−O({p}X+1))

S({p}X,O) = ∆(tstart, thad)δ(O−O({p}X))−
∫ thad

tstart

dt
d∆(tstart, t)

dt
S({p}X+1,O)

P =

∫

dΦX+1

dΦX

wX+1

wX

∣

∣

∣

∣

PS

Splitting Operator
= Shower approximation 

of X → X+1



(Markov Chain)

The Shower Operator

To ALL Orders

All-orders Probability that nothing happens

30

S({p}X,O) = δ(O −O({p}X))

S({p}X,O) =

(

1 −
∫ thad

tstart

dt
dP
dt

)

δ(O−O({p}X)) +

∫ thad

tstart

dtX+1
dP

dtX+1
δ(O−O({p}X+1))

S({p}X,O) = ∆(tstart, thad)δ(O−O({p}X))−
∫ thad

tstart

dt
d∆(tstart, t)

dt
S({p}X+1,O)

P =

∫

dΦX+1

dΦX

wX+1

wX

∣

∣

∣

∣

PS

PDGLAP =
∑

i

∫

dQ2

Q2
dz Pi(z)

PAntenna =

∫

dsijdsjk

16π2s

|M3(sij, sjk, s)|2

|M2(s)|2

S({p}X,O) = δ(O −O({p}X))

S({p}X,O) =

(

1 −
∫ thad

tstart

dt
dP
dt

)

δ(O−O({p}X)) +

∫ thad

tstart

dtX+1
dP

dtX+1
δ(O−O({p}X+1))

S({p}X,O) = ∆(tstart, thad)δ(O−O({p}X))−
∫ thad

tstart

dt
d∆(tstart, t)

dt
S({p}X+1,O)

P =

∫

dΦX+1

dΦX

wX+1

wX

∣

∣

∣

∣

PS

PDGLAP =
∑

i

∫

dQ2

Q2
dz Pi(z)

PAntenna =

∫

dsijdsjk

16π2s

|M3(sij, sjk, s)|2

|M2(s)|2

“Nothing Happens”

“Something Happens”

(Exponentiation)
Analogous to nuclear decay

N(t) ≈ N(0) exp(-ct)

S({p}X,O) = δ(O −O({p}X))

S({p}X,O) =

(

1 −
∫ thad

tstart

dt
dP
dt

)

δ(O−O({p}X)) +

∫ thad

tstart

dtX+1
dP

dtX+1
δ(O−O({p}X+1))

S({p}X,O) = ∆(tstart, thad)δ(O−O({p}X))−
∫ thad

tstart

dt
d∆(tstart, t)

dt
S({p}X+1,O)

P =

∫

dΦX+1

dΦX

wX+1

wX

∣

∣

∣

∣

PS

PDGLAP =
∑

i

∫

dQ2

Q2
dz Pi(z)

PAntenna =

∫

dsijdsjk

16π2s

|M3(sij, sjk, s)|2

|M2(s)|2

∆(t1, t2) = exp

(

−
∫ t2

t1

dt
dP
dt

)

“Evaluate Observable”→ 

“Continue Shower”→ 



Splitting Functions
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S({p}X,O) = δ(O −O({p}X))

S({p}X,O) =

(

1 −
∫ thad

tstart

dt
dP
dt

)

δ(O−O({p}X)) +

∫ thad

tstart

dtX+1
dP

dtX+1
δ(O−O({p}X+1))

S({p}X,O) = ∆(tstart, thad)δ(O−O({p}X))−
∫ thad

tstart

dt
d∆(tstart, t)

dt
S({p}X+1,O)

P =

∫

dΦX+1

dΦX

wX+1

wX

∣

∣

∣

∣

PS
∫

∣

∣

∣

∣

PS

PDGLAP =
∑

i

∫

dQ2

Q2
dz Pi(z)

∑

∫

PAntenna =

∫

dsijdsjk

16π2s

|M3(sij, sjk, s)|2

|M2(s)|2

Splitting Operator
Examples

!"#$%"
#$&#&%"

“DLA” 

!"
#$% &
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NB: Also others, e.g., Catani-Seymour 
(SHERPA), Sector Antennae, ….

DGLAP
(E.g., HERWIG, PYTHIA)

10.1.1 The evolution equations

In the shower formulation, the kinematics of each branching is given in terms of two
variables, Q2 and z. Somewhat different interpretations may be given to these variables,
and indeed this is one main area where the various programs on the market differ. Q2

has dimensions of squared mass, and is related to the mass or transverse momentum scale
of the branching. z gives the sharing of the a energy and momentum between the two
daughters, with parton b taking a fraction z and parton c a fraction 1− z. To specify the
kinematics, an azimuthal angle ϕ of the b around the a direction is needed in addition;
in the simple discussions ϕ is chosen to be isotropically distributed, although options for
non-isotropic distributions currently are the defaults.

The probability for a parton to branch is given by the evolution equations (also called
DGLAP or Altarelli–Parisi [Gri72, Alt77]). It is convenient to introduce

t = ln(Q2/Λ2) ⇒ dt = d ln(Q2) =
dQ2

Q2
, (162)

where Λ is the QCD Λ scale in αs. Of course, this choice is more directed towards the
QCD parts of the shower, but it can be used just as well for the QED ones. In terms of
the two variables t and z, the differential probability dP for parton a to branch is now

dPa =
�

b,c

αabc

2π
Pa→bc(z) dt dz . (163)

Here the sum is supposed to run over all allowed branchings, for a quark q → qg and
q→ qγ, and so on. The αabc factor is αem for QED branchings and αs for QCD ones (to
be evaluated at some suitable scale, see below).

The splitting kernels Pa→bc(z) are

Pq→qg(z) = CF
1 + z2

1− z
,

Pg→gg(z) = NC
(1− z(1− z))2

z(1− z)
,

Pg→qq(z) = TR (z2 + (1− z)2) ,

Pq→qγ(z) = e2
q

1 + z2

1− z
,

P�→�γ(z) = e2
�

1 + z2

1− z
, (164)

with CF = 4/3, NC = 3, TR = nf/2 (i.e. TR receives a contribution of 1/2 for each
allowed qq flavour), and e2

q and e2
� the squared electric charge (4/9 for u-type quarks, 1/9

for d-type ones, and 1 for leptons).
Persons familiar with analytical calculations may wonder why the ‘+ prescriptions’

and δ(1− z) terms of the splitting kernels in eq. (164) are missing. These complications
fulfil the task of ensuring flavour and energy conservation in the analytical equations. The
corresponding problem is solved trivially in Monte Carlo programs, where the shower evo-
lution is traced in detail, and flavour and four-momentum are conserved at each branching.
The legacy left is the need to introduce a cut-off on the allowed range of z in splittings, so
as to avoid the singular regions corresponding to excessive production of very soft gluons.

Also note that Pg→gg(z) is given here with a factor NC in front, while it is sometimes
shown with 2NC . The confusion arises because the final state contains two identical par-
tons. With the normalization above, Pa→bc(z) is interpreted as the branching probability
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t0
(t1,z1)

(t2.z2)

s
I

K

i
j
k

(sij,sjk) (…)
(…)

Dipole-Antennae
(E.g., ARIADNE, VINCIA)

Antenna functions of invariants

aqq̄→qgq̄ = 2CF
sijsjk

�
2siks + s2

ij + s2
jk

�

aqg→qgg = CA
sijsjk

�
2siks + s2

ij + s2
jk − s3

ij

�

agg→ggg = CA
sijsjk

�
2siks + s2

ij + s2
jk − s3

ij − s3
jk

�

aqg→qq̄�q� = TR
sjk

�
s− 2sij + 2s2

ij

�

agg→gq̄�q� = aqg→qq̄�q�

28

… + non-singular terms

S({p}X,O) = δ(O −O({p}X))

S({p}X,O) =

�
1−

� thad

tstart

dt
dP

dt

�
δ(O−O({p}X)) +

� thad

tstart

dtX+1
dP

dtX+1
δ(O−O({p}X+1))

S({p}X,O) = ∆(tstart, thad)δ(O−O({p}X))−
� thad

tstart

dt
d∆(tstart, t)

dt
S({p}X+1,O)

P =

�
dΦX+1

dΦX

wX+1

wX

����
PS

PDGLAP =
�

i

�
dQ2

Q2
dz Pi(z)

PAntenna =

�
dsijdsjk

16π2s

|M3(sij, sjk, s)|2

|M2(s)|2

dPIK→ijk =
dsijdsjk

16π2s
a(sij, sjk)

∆(t1, t2) = exp

�
−

� t2

t1

dt
dP

dt

�

26



Coherence
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Coherence

QED: Chudakov effect (mid-fifties)
e+

e−cosmic ray γ atom

emulsion plate reduced
ionization

normal
ionization

QCD: colour coherence for soft gluon emission

+

2

=

2

solved by • requiring emission angles to be decreasing
or • requiring transverse momenta to be decreasing

Approximations to 
Coherence:

Angular Ordering (HERWIG)

Angular Vetos (PYTHIA)

Coherent Dipoles/Antennae 
(ARIADNE, CS, VINCIA)

Illustrations by T. Sjöstrand



The Initial State
Parton Densities and Initial-State Showers

34



Parton Densities for MC
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LO
Consistent with LO matrix elements in LO generators
Effectively ‘tuned’ to absorb missing NLO contributions
But they give quite bad fits compared to NLO … 

NLO

Formally consistent with NLO matrix elements
Effectively ‘tuned’ with NLO theory 
→ badly tuned for LO matrix elements (not enough low-x glue)?
Suggest to only use for NLO generators?

LO*,
MC 

pdfs, 
...

Best of both worlds? 
PDF has always had an impact on generator tuning
But now we are going the other way: tune the PDF!

Still gaining experience. Proceed with caution & sanity checks



Still, good to ≈ 10% even for LO 
gluon in 10-4 < x < 10-1

(bigger errors at lower Q2)

Much debate recently on PDF errors

PDF Uncertainties

Attempt to propagate 
experimental errors 
properly → 68% CL

But “tensions” between 
different badly compatible 

data sets → … ?

+ unknown uncertainty from 
starting parametrization at low Q2

→ 90%, something else?
MSTW08 LO 90%
MSTW08LO 68%

CTE
Q6L1

Gluon PDF uncertainty, Q2 = (10 GeV)2



Initial-State Evolution
= Spacelike (backwards) Evolution
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p2 = t < 0

ISR:FSR:

p2  >
 0

Virtualities are
Timelike: p2>0

Virtualities are
Spacelike: p2<0

Start at Q2 = Qf2

Unconstrained forwards 
evolution

Start at Q2 = Qi2

Constrained backwards evolution
towards boundary condition = proton

+ Look Out! (Especially Tricky): ISR-FSR interference! FSR off ISR!



Hadronization

Small strings → clusters. Large clusters → strings

38

String vs. Cluster

c

g

g

b

D−
s

Λ
0

n

η

π+

K∗−

φ

K+

π−

B
0

program PYTHIA HERWIG
model string cluster
energy–momentum picture powerful simple

predictive unpredictive
parameters few many
flavour composition messy simple

unpredictive in-between
parameters many few

“There ain’t no such thing as a parameter-free good description”

(&SHERPA)

Illustrations by T. Sjöstrand



≈ Local Parton-Hadron Duality (LPHD)
Universal fragmentation of a parton into hadrons

This is awfully wrong!
The point of confinement is that partons are colored 
Hadronization = the process of color neutralization

I.e, the one question NOT addressed by LPHD or I.F.
My opinion: despite some success at describing inclusive 
quantities, it is fundamentally misguided to think about 
independent fragmentation of individual partons

Independent Fragmentation?

39

q
π 

π 
π 



The (Lund) String Model
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Map:

• Quarks → String 
Endpoints

• Gluons → Transverse 
Excitations (kinks)

• Physics then in terms 
of string worldsheet 
evolving in spacetime

• Probability of string 
break constant per unit 
area → AREA LAW

Simple space-time picture + no separate params for g jets
Details of string breaks more complicated … 

Illustrations by T. Sjöstrand



Underlying Event:
Multiple Parton-Parton Interactions

41

!  Underlying Event 
(note: interactions correllated in colour: 

hadronization not independent) 

Sjöstrand & PS : JHEP03(2004)053, EPJC39(2005)129 

multiparton 
PDFs derived 
from sum rules 

Beam remnants 
Fermi motion /  
primordial kT 

Fixed order 
matrix elements 

Parton Showers 
(matched to  
further Matrix  
Elements) 

perturbative  
“intertwining”? 

“New” Pythia model 

Main parameter: p⊥min (perturbative cutoff)



Generators - Summary
• Allow to connect theory ↔ experiment

• On PHYSICAL OBSERVABLES

• Precision is a function of Model & Constraints

• Random Numbers to Simulate Quantum Behaviour

• Fixed-Order pQCD supplemented with showers, 
hadronization, decays, underlying event, matching, ... 

• No single program does it all

• + Variations needed for uncertainty estimates!

• Rapid evolution of theory/models/constraints/tunes/…

• Emphasis on interfaces, interoperability

42



(Some) Possible Discussion Topics

• What’s the difference (relation?) between zero bias, 
minimum-bias, and underlying event?

• + What’s (the role of) diffraction?

• How does resummation get around the problem of infinities 
at fixed order? Where do the infinities go?

• Where does the motivation for the string model come from? 
How much can we “know” about non-perturbative physics?

• + how do strings break?  

• Multiple interactions: perturbative or a non-perturbative 
component? Beam remnants and PDFs? Is it a theory or a model?

• Factorization
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